广告
文章
  • 全站
  • 文章
  • 论坛
  • 博客
高级
首页 / 制造行业 / 中国制造业 / 正文
 
广告
 

永利 新登录 网址是多少永利娱乐www44633

按周汇总,也符合供应链运营的特点:管理精细的企业,一般都是按周来汇总指标,管控过程的。
世界经理人专栏

刘宝红 西斯国际执行总监

在采购和供应链管理领域有十几年的丰富经历,主要集中在高科技和小批量行业 。畅销书《采购与供应链管理:一个实践者的角度》和《供应链管理:高成本、高库存、重资产的解决方案》作者。

西斯国际(CSCS International)总部美国硅谷,专注供应链、运营、采购和计 划领域的培训与咨询,帮助本土企业提高国际竞争水平。

https://www.scm-blog.com

在计算安全库存的时候,当需求相对平稳的时候,我们一般用过去一段时间的平均需求当做预测,计算这段需求历史的标准差,来量化需求的不确定性。这里有两个问题要考虑:其一,样本的数量,即用多少个数据点来计算;其二,数据汇总的颗粒度,比如按日,还是按周或按月汇总。

对于数据点,数据点太少,会影响标准差在数理统计上的可靠性,从而影响安全库存的准确性;数据点太多,意味着取更长时间的需求历史,可能导致需求历史的代表性下降——这期间需求的模式可能发生大的变化,不再符合正态分布。对于正态分布,我们一般要求有30个以上的样本,其统计指标比如安全库存才更可靠。我们往往没有那么多的数据。不过少于13个样本(1个季度13周),我会非常担心——我会尽量用过去13到26周的需求历史,这样有13到26个数据点。

对于需求汇总的颗粒度,太小不好,因为可能放大了需求的变动性,导致安全库存多放,甚至可能让需求历史不再符合正态分布(因而没法用正态分布的公式计算安全库存);太大也不行,因为可能掩盖了需求的变动性,标准差会低估,导致安全库存设太少。让我们看个具体的例子。

这是某跨境电商的一个产品过去3个月的销量。我们先按照日来汇总销量,得到91个数据点;然后按照周来汇总销量,得到13个数据点;最后,我们按月汇总,得到3个数据点。如图1,按日汇总,需求的变动性看上去最大;按月汇总,需求就相对“平稳”多了。直观上,汇总方式直接“影响”需求的变动性。这里的“影响”打引号,是因为这是展示出不同的变动性,而实际上并没有改变需求的变动性。

图1:不同的汇总方式,会“影响”需求的变动性

接着,我们根据按日和按周汇总的数据,计算各自的平均值、标准差,用标准差除以平均值,得到每组数据的离散系数(按月汇总的数据点太少,不能计算这样的参数)。如图2,很明显,当按日汇总的时候,离散度要比按周汇总的高——离散度越大,表明数据的变动性越大。

这很正常,因为时间颗粒度越大,期内的需求变动越可能互相抵消。打个比方,假定每周的需求是210个,分配到每日,一个极端是每天都是30个,另一个极端是其中一天是210个,其余6天都是零。两种情况,需求的变动性可大不一样,对安全库存的要求也是,但因为汇总到周,这样的变动性就被掩盖了。这也意味着,按照两种不同汇总情况,计算出来的安全库存可能不一样。

按日,按周还是按月汇总需求历史?

图2:按日汇总“放大”了需求的波动性

更糟糕的是,如果按日汇总,需求历史不符合正态分布(我做了卡方检验[1],验证的结果是的确不符合)。既然不符合正态分布,前面讲到的正态分布公式就不适用。那该用什么别的公式来计算,也没看到合适的,除非是需求非常离散,符合泊松分布,我们可以用泊松分布的公式来计算[2]。

学者们在研究安全库存时,总是假定需求符合正态分布;但我们在实践中,却有很多不符合正态分布的情况,我们这些从业人员没有很好的模型来对付,学者们则继续把头埋在沙子里,踩着那些不现实的假设,在象牙塔尖越钻越深,不管不顾地自娱自乐。

对案例企业来说,这是中心仓给前置仓(店铺)的补货,虽然店铺每天都在卖货,需求是每天都在发生,但中心仓给前置仓的补给呢,则是按照每周一次的频率。所以,这里的需求历史按周汇总,是一种更靠谱的做法。我做了卡方检验,13周的需求历史也符合正态分布,我们可以用上述安全库存的公式来计算,也就是说计算出补货周期内的需求变动性(标准差),乘以有货率系数。

在我的经验中,按日汇总,时间的颗粒度太小,数据往往不符合正态分布;按月汇总,时间的颗粒度太大,往往掩盖了太多的变动;按周汇总,一方面给我们相对多的数据点,另一方面也更可能符合正态分布。按周汇总,也符合供应链运营的特点:管理精细的企业,一般都是按周来汇总指标,管控过程的。

在实践中,我看到有些人为了增加数据点,就按日来分解数据,结果数据不符合正态分布——绝大多数人是没有足够的数理统计知识来验证,但他们还是用正态分布的公式来计算安全库存。我也看到很多人,特别是管理粗放的企业,按月归并数据,一方面导致数据点太少,缺乏数理统计的意义;另一方面也掩盖了太多的变动,导致在计算标准差时低估了需求的变动性,因而设置的安全库存太低。两种情况,都要避免。

本文系刘宝红授权世界经理人发布,并经世界经理人编辑。文章内容仅代表作者独立观点,不代表世界经理人立场,如需转载请联系原作者获取授权,并请附上出处(世界经理人)及本页链接https://www.troyalves.com/manufacturing/ma/8800101864/01/,推荐关注微信公众号(ID:CEC_GLOBALSOURCES)

© 世界经理人:自1999年创立以来,世界经理人网站(www.troyalves.com)致力于引导职业经理人实现卓越管理,以专业的形象为经理人用户全方位提供最佳管理资讯服务和互动平台。

    

 
 

相关文章

今日聚焦

 
广告
广告

世界经理人网站App下载

热门排行榜

  • 热门
  • 经典
  • 管理
  • 文章
  • 论坛
  • 博客
 
 
资讯订阅
世界经理人 iPhone APP
世界经理人 微信公众号